105 research outputs found

    Computing Extensions of Linear Codes

    Full text link
    This paper deals with the problem of increasing the minimum distance of a linear code by adding one or more columns to the generator matrix. Several methods to compute extensions of linear codes are presented. Many codes improving the previously known lower bounds on the minimum distance have been found.Comment: accepted for publication at ISIT 0

    Non-Additive Quantum Codes from Goethals and Preparata Codes

    Full text link
    We extend the stabilizer formalism to a class of non-additive quantum codes which are constructed from non-linear classical codes. As an example, we present infinite families of non-additive codes which are derived from Goethals and Preparata codes.Comment: submitted to the 2008 IEEE Information Theory Workshop (ITW 2008

    New self-dual additive F4\mathbb{F}_4-codes constructed from circulant graphs

    Full text link
    In order to construct quantum [[n,0,d]][[n,0,d]] codes for (n,d)=(56,15)(n,d)=(56,15), (57,15)(57,15), (58,16)(58,16), (63,16)(63,16), (67,17)(67,17), (70,18)(70,18), (71,18)(71,18), (79,19)(79,19), (83,20)(83,20), (87,20)(87,20), (89,21)(89,21), (95,20)(95,20), we construct self-dual additive F4\mathbb{F}_4-codes of length nn and minimum weight dd from circulant graphs. The quantum codes with these parameters are constructed for the first time.Comment: 11 page

    Quantum Goethals-Preparata Codes

    Full text link
    We present a family of non-additive quantum codes based on Goethals and Preparata codes with parameters ((2^m,2^{2^m-5m+1},8)). The dimension of these codes is eight times higher than the dimension of the best known additive quantum codes of equal length and minimum distance.Comment: Submitted to the 2008 IEEE International Symposium on Information Theor

    Quantum Block and Convolutional Codes from Self-orthogonal Product Codes

    Get PDF
    We present a construction of self-orthogonal codes using product codes. From the resulting codes, one can construct both block quantum error-correcting codes and quantum convolutional codes. We show that from the examples of convolutional codes found, we can derive ordinary quantum error-correcting codes using tail-biting with parameters [[42N,24N,3]]_2. While it is known that the product construction cannot improve the rate in the classical case, we show that this can happen for quantum codes: we show that a code [[15,7,3]]_2 is obtained by the product of a code [[5,1,3]]_2 with a suitable code.Comment: 5 pages, paper presented at the 2005 IEEE International Symposium on Information Theor

    Non-catastrophic Encoders and Encoder Inverses for Quantum Convolutional Codes

    Full text link
    We present an algorithm to construct quantum circuits for encoding and inverse encoding of quantum convolutional codes. We show that any quantum convolutional code contains a subcode of finite index which has a non-catastrophic encoding circuit. Our work generalizes the conditions for non-catastrophic encoders derived in a paper by Ollivier and Tillich (quant-ph/0401134) which are applicable only for a restricted class of quantum convolutional codes. We also show that the encoders and their inverses constructed by our method naturally can be applied online, i.e., qubits can be sent and received with constant delay.Comment: 6 pages, 1 figure, submitted to 2006 IEEE International Symposium on Information Theor

    Constructions of Quantum Convolutional Codes

    Get PDF
    We address the problems of constructing quantum convolutional codes (QCCs) and of encoding them. The first construction is a CSS-type construction which allows us to find QCCs of rate 2/4. The second construction yields a quantum convolutional code by applying a product code construction to an arbitrary classical convolutional code and an arbitrary quantum block code. We show that the resulting codes have highly structured and efficient encoders. Furthermore, we show that the resulting quantum circuits have finite depth, independent of the lengths of the input stream, and show that this depth is polynomial in the degree and frame size of the code.Comment: 5 pages, to appear in the Proceedings of the 2007 IEEE International Symposium on Information Theor

    Quantum MDS Codes over Small Fields

    Full text link
    We consider quantum MDS (QMDS) codes for quantum systems of dimension qq with lengths up to q2+2q^2+2 and minimum distances up to q+1q+1. We show how starting from QMDS codes of length q2+1q^2+1 based on cyclic and constacyclic codes, new QMDS codes can be obtained by shortening. We provide numerical evidence for our conjecture that almost all admissible lengths, from a lower bound n0(q,d)n_0(q,d) on, are achievable by shortening. Some additional codes that fill gaps in the list of achievable lengths are presented as well along with a construction of a family of QMDS codes of length q2+2q^2+2, where q=2mq=2^m, that appears to be new.Comment: 6 pages, 3 figure
    • …
    corecore